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The partition function is studied for an array of axisymmetric, hard bodies (cap- 
ped cylinders, etc.) with each fixed at the base on a regular one-dimensional lat- 
tice. It is shown that if a phase transition occurs in a system of n molecules, then 
it also occurs in a system of two molecules for the same value of the spacing 
parameter. With certain additional technical assumptions the converse is also 
true. Results are reported specifically for a system of thin, hard rods. Necessary 
and sufficient conditions are shown for a first-order transition to occur in the 
thermodynamic limit; there is only one transition and that happens when the 
spacing parameter  is equal to the length of the rod. As expected, there is no 
phase transition when the rod is contracted to a point. 

KEY WORDS:  Phase transition; monomolecular  film; one-dimensional lat- 
tice; partition function; thermodynamic limit. 

1. I N T R O D U C T I O N  

The behavior of monomolecular films (monolayers) spread at liquid-fluid 
interfaces and crystalline substrates has been intensively studied (1 6) since 
the last century. Langmuir's experimental work in the early part of this 
century showed the existence of two-dimensional condensation phenomena 
of monolayers under compression. The model we develop in this paper can 
be used for monolayers either formed by adsorption onto solid surfaces or 
spread at the liquid/fluid interface. To be explicit, we will refer to spread 
monolayers (1) composed of long-chain amphiphatic molecules (containing 
both hydrophilic and hydrophobic groups), which may behave like cylin- 
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ders or ellipsoids of revolution. The phase behavior of monolayers of this 
type has been studied extensively; a liquid gas transition and a liquid- 
expanded to liquid-condensed transition have been found 
experimentally/1'2t Of particular interest was the determination by Pallas (3~ 
that the liquid-expanded to liquid-condensed transition wherein both the 
molecular orientation and the monolayer density change was first order at 
least for pentadecanoic acid. The various theories that have been construc- 
ted to represent this transition are designed to predict higher order trans- 
itions. It is timely to investigate this problem again, keeping in mind that 
such transitions involve molecular orientation and can be first order. 

Discussion of the relevant early theories using a thermodynamic 
approach is found in the monograph by Mayer and Mayer(4~; see also the 
fundamental papers by Kac et  al. (5~ One should also consult the following 
articles and the literature quoted in Refs. 6-8 for discussions of various 
models for molecules and the concepts involved in phase transitions; Refs. 7 
and 9 discuss rotating squares or thin rods; Ref. 10 discusses flexible 
molecules sitting on a planar lattice interacting according to the rules of 
the Brownian dynamics; and Ref. 1l discusses Gaussian ellipsoids. 
Although there exists a rich and deep theory of condensation phenomena, 
quantitative results are often derived by numerical methods. 

In this paper we deal with finite systems of identical rigid molecules 
with their bases constrained to sites on a one-dimensional lattice (see 
Fig. 1). Their motion is restricted to swinging in the upper half-plane. The 
molecules are modeled by hard objects, with their nearest neighbor interac- 

1! 
~ - - r  

axis of symmetry 
\ 

Fig. 1. The statistical mechanical system in which each particle is represented by a two- 
dimensional body with an axis of symmetry. The dynamics of the system is derived from 
rotational motions of particles in the upper half-plane ( -  ~/2 ~< 0j ~< ~/2) about sites of a one- 
dimensional lattice with spacing r. 
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tion governed by a hard core potential. We also take into account outside 
forces provided by the substrate or external sources. In the last section it is 
shown that these forces can strongly influence condensation phenomena. 
The principal thermodynamic quantities (such as the partition function, 
pressure, etc.) depend on many parameters (such as the temperature and 
other parameters determining the shape of the potential function), but we 
are mainly interested in their dependence on the lattice spacing r. 

The partition function, even in the simplest case, is a numerically com- 
plicated object. We obtain exact formulas for the partition function, at least 
for certain domains of the parameter r. In particular, we have a simple way 
for deriving expressions for the partition function in the thermodynamic 
limit. 

We define a phase transition to have occurred if the "pressure" 
(0 log Q/&) takes infinite values at some concentration (value of I/r). We 
seek values of r where the partition function is nonanalytic. 

We summarize the relevant equations of statistical thermodynamics 
used in this paper so as to establish notation. Consider a system of N par- 
ticles with configuration 0 = (01,..., ON) f~ oH  where O = [a, b]. 

The states of the above system are probability distributions on O N 
that possess a density with respect to Lebesgue measure m on oN; the set 
of admissible states is 

{ ; } a= f:f>~O, feLl(ON, m), f d m = l  

A physical quantity of this system is any Borel function G: O N--* R. What 
is observable in state f is 

E(f) = fox G(O) f(O) dm(O) 

The entropy of state f is given by 

S(f) = - fo~f(O ) log f(O) dm(O) 

and its maximum value for f e a  (corresponding to equilibrium of the 
system) is attained for 

f~(O) = Q-l(/?) exp[ - /?H(0)]  

Here the partition function for the canonical ensemble depends on / / and  
perhaps other parameters embedded in H and is defined by 

Q(~) = fo N exp[ -/~H(0)3 dm(O) 
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Fig. 2. The statistical mechanical system in which each particle is represented by its projec- 
tion on a one-dimensional lattice. Mathematically the system reduces to the system of inter- 
vals of varying length with centers located at lattice points with spacing r. The interaction 
potential depends on the distance d. 

where H(O) = Te + V(O) + Vo(O). Here Te stands for the kinetic energy, V is 
the potential energy for the configuration, and Vo is an external potential. 
For this ensemble, the Helmholtz free energy is F =  - k T l o g  Q. 

Experimentally, phase transitions are observed as "pathological" 
behavior of the free energy or its derivatives. As we have mentioned, this 
may involve the nonanalyticity of the partition function. 

Section 2 contains a description of the model and Section 3 the 
thermodynamic considerations. Specific pair interactions are developed in 
Section 4. We conclude with a description of the phase transition for the 
system of thin rods. 

The major conciusion is that the one-dimensional lattice of a 
monolayer of rods permits a phase transition. This result should be com- 
pared, first, with the results of Kac et al., ~5~ who prove that the system of 
hard balls with centers restricted to a one-dimensional line and exponential 
potentials exhibits no phase transition, and second, with the result of Casey 
and Runnels, ~3t who established that a one-dimensional system of hard 
squares on a lattice with a rotational degree of freedom will exhibit a phase 
transition as the lattice spacing is increased. 

Our results have been obtained via purely analytic means, whereas 
other models (cf. Casey and Runnels 131 and Mann(l~ although 
geometrically simple and involving a relatively small number of molecules, 
were only treated numerically, subject to limited computer resources. 

Other chemical results are due to Onsager. (13/The Onsager approach 
is to treat molecules in different positions as having different shapes. A 
typical (one-dimensional) example is shown in Fig. 2. 

2. O N E - D I M E N S I O N A L  LATTICE M O D E L  OF A 
S U R F A C T A N T  M O N O L A Y E R  

In this section we describe a simple one-dimensional model that 
mimics a change in both orientation and density with compression of a sur- 
factant monolayer. 
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Suppose that each molecule is represented by a two-dimensional 
regular body (Fig. 1) with an axis of symmetry. The dynamics of a 
molecule is derived from rotational motion about a point on the axis of 
symmetry (called the head). The heads are tied down at lattice positions 
(see Fig. 1). A formalization of this model involves a Hamiltonian of the 
following form: 

L 1  2 ,,-1 L 
H(O)= 5I,  c~ �9 + Z U(O,, 0,+1)+ U(On, 01)+ Uo(O,) (1) 

i = 1  / = 1  i = 1  

where I, is the moment of inertia, co i is the angular momentum, and 0i 
determines the angle of tilt of the ith molecule (Fig. 1). It is convenient to 
take 0, as the angle between the axis of symmetry of the ith molecule and 
the normal to the lattice line. The potential U0 includes outside forces, in 
particular an influence of the substrate, the lattice in this case. The poten- 
tial U accounts for the boundary of the lattice; periodic ( U =  U) and non- 
periodic versions of the model will be considered. 

Only pairs of nearest neighbor interactions are considered. The poten- 
tial U (or U-) takes the value +c~ if molecules overlap and is zero 
otherwise. The configuration space for a pair of molecules is a product of 
intervals [ - z r /2 ,~ /2 ]  x [ - ~ / 2 , ~ / 2 ] .  Therefore, we can find a set C c  
[ - ~ / 2 ,  z~/2]x [-1c/2, g/2] that is symmetric with respect to the line 
01 + 02 = 0 and such that 

U(O~, 02)= +oolc(O1,02) (2) 

where I is the 0 1 indicator function of C (by convention, + oo x 0 = 0). 
Notice that C and U depend on additional parameters associated with a 
geometric structure of a molecule and its location on the lattice. 

We remark that Eq. (2) is a special case of the Kihara potential, where 
molecular interaction works through the minimal distance between shells 
occupied by molecules (cf., e.g., Ref. 12, Chapter 4). 

3. T H E R M O D Y N A M I C S  

The canonical partition functions associated with the Hamiltonian (l) 
are 

Qn=A " f ' " f  expf- V(O)/kT] dO (3) 
[ r c /2 , r c /2 ]  n 

where A = h/(2rckT) 1/2, k and h being the Boltzmann and Planck constants, 
respectively. We consider only two boundary conditions: either U-=O or 
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0 =  U. In the second case, which corresponds to periodic boundary con- 
ditions, a tilde will be used over the appropriate quantities. Denote 

. . . . .  o.): (oi, oj) r c} 

where C is the configuration set appearing in Eq. (2). In this notation 

n 1 

Bn= ('] B,.,+, (B.=B.c~B..~) 
i = l  

is the total configuration space for n particles. If we define q,(0)= 
exp[-Uo(O)/kT] and A 1 = h/2~kT, then we can rewrite (3) in the form 

Qn = A1  n f "" f ( p ( O 1 ) ' ' '  @(On)dO (3a) 
Bn 

If U o = Uo - const, then 

Q, = (e "~ m(B,) (3b) 

where m denotes the n-dimensional Lebesgue measure. The quantities ~), 
and m(B,) can be obtained in a similar way with obvious modification due 
to periodicity. All principal thermodynamic functions can be derived from 
Q,. The Helmholtz free energy is expressed by the equation An= 
- k T l o g Q , ,  and the one-dimensional analog of the three-dimensional 
pressure or two-dimensional surface tension is given by the equation P,  = 
-kT(O log Q,/&). We are interested in the limit behavior of the averages, 
in particular, of the average Helmholtz free energy per molecule 

F--- lim A,/n = - k T  lim log Q1/, 
n ~ o o  n ~ o o  

Here, the lattice spacing r is held constant as n goes to infinity. 
A phase transition that occurs in the system we study corresponds to 

the existence of a lattice spacing ro > 0  such that Ip,(r0) ] = oc. 
A priori, the phase transition in a finite system may depend on the 

number of molecules, the boundary conditions of the model, and the form 
of the potential Uo that represents outside forces, and its study is usually 
very complicated due to combinatorial reasons. In practice, the phase 
transition is often considered for the system in the thermodynamic limit 
(i.e., when n--, oo). For example, general methods developed for nearest 
neighbor potential reduce the problem of evaluation of the free energy in 
the limit to the problem of finding the maximal eigenvalue for the linear 
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integral operator ~0~ [q~(y) lc(x ,  y) dy. The reduction means that the 
information about certain pair characteristics is sufficient to determine the 
behavior of the whole system (cf., e.g., the classic paper by Kac et al.(5)). 

4. P A I R  V E R S U S  n - P A R T I C L E  P H A S E  T R A N S I T I O N S  

As observed at the end of Section 3, the information about pairs often 
suffices for the study of the whole system. In this section, we will show that 
for the potential considered in this paper, under certain additional restric- 
tions, the phase transition for the system of n particles occurs if and only if 
the phase transition occurs for the system of two particles. 

From here on we assume that the potential Vo is bounded from below. 
Such a natural assumption excludes infinite outside attractive forces, and 
implies existence of a constant K >  0 such that 

~o(0) = e x p [ -  Uo(0)] < K 

for every 0e  I - z / 2 ,  ~/2]. 

Proposition 1. If a phase transition occurs in a system of n 
molecules, then it also occurs in a system of two molecules for the same 
value of the spacing parameter. 

Proof. Let r, ro be in the domain of the partition function Q,. The 
increment of Q, from r to r o can be decomposed as follows: 

AQ.  a_=r Q ~ ( r ) -  Q~(ro) 

Bn(r) --  Bn(r O) 

Bn(r)  Bn(r,ro) Bn(r,ro) r 

where 

Bn(F, t o )=  {0: (01, 02)r (On 2, On_l)r  (On-r, On)q~C(r)} 

One can check easily that 

B=(r) -- B~(r, ro) ~ B~ ,(r) -- B .  l(ro) 

B,,(r, ro) -- B.,(ro) ~ B2(r) -- Be(ro) 
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Therefore 

AQn Al" 
- -  ~ [ f ' ' ' f  q)(O1)'''(P(On) dO 

Bn l(r)--Bn l(r0) 

K AOnl [/K~ n-2 Ae2 + 
<~A 1- r-ro \AIJ r-ro 

I - - !  

(_x)n 2 
<~(n-1)\Al] r - r o  

the last inequality following by induction. The above estimate immediately 
yields the following implications: 

dQ, (ro) dQ2 
T = co --, - -g-r  ( t o )  - -  

which ends the proof of Proposition 1 in the case U'= 0. In the periodic 
case (U=  U), we proceed in a similar way to get the following inequality: 

since Q2(r) = �89 + �89 | 

For the nonperiodic model and under additional technical 
assumptions the implication converse to the one contained in Proposition 1 
also holds true. 

Suppose that R is a set of the spacing parameters r such that 

(a) C(r) is a decreasing set-valued function on R [i.e., C(r)c C(r') 
whenever r >/r', r, r' e R]. 

(b) u = u(r) =def max{0: (0, - 0) r C} > 0, r s R} (cf. Fig. 3). 

Condition (a) has an obvious physical interpretation: the higher the 
concentration, the more restricted the configuration space becomes. 
Property (b) excludes certain pathological situations. For instance, it may 
happen that for certain values of parameter r only finitely many molecules 
are allowed in the system, and the passage to the thermodynamic limit 
becomes meaningless. These comments are well illustrated by the example 
of a curiously behaving system of quarter-circles swinging around the cir- 
cles' centers [cf. Figs. 4a and 4b, the latter representing C(r)]. 
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Configuration space for pair interactions. (a) C =  C(r) represents the excluded con- 
figurations of angles 01, 02 describing positions of neighboring particles. (b)The angle u = 
u(r) = max{ 0: (0, - 0 ) ~  C} corresponds to the maximal symmetric permissible tilt of neighbor- 
ing particles. 

a .  

r=O / 

/ /  / / 
/ . /  ~~~lid.f--J"" 

I I 
I I 
I I 
I I 
I f 

---r I 

~ r = 2  \ 
- r > 2  

b. Boundaries of C : C ( r )  

- -  4"-2 < _ r < _ 2  

. . . . .  I <_ r _<-,/ '2 

O < _ r < l  

Fig. 4. The curious behavior of quarter-circle particles. (a) The thermodynamic limit is 
meaningless for r ~< 1 since in this case only a finite number of particles is allowed in the 
system. (b) The shapes of regions of excluded configurations change abruptly for values of the 
spacing parameter r equal to 0, 1, x/2, 2. 
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P r o p o s i t i o n  2. Suppose that R and C(r), rER,  satisfy conditions 
(a) and (b). Then if a phase transition occurs in a system of two molecules, 
then it also occurs in a system of n molecules for the same value of the 
spacing parameter. 

Proof. Let r, ro ~ R be such that r > ro and put u0 = u(ro), Then 

{0:01 E I---U0, /'/0]'"" On--2 E [--blo, U0]' 

(0._ ~, 0.) ~ C(ro) - C(r ) ,  0 . _  1 + O. >~ 0 } 

{0:01Z [---/~/0' U0]'"" On--2Z [--I~lo, /'/0-], 

0._,  >>. -Uo, (0._1, O.)r C(ro)-  C(r) } 

= {0: (01, 02)r C(ro) ..... (0._2, 0._1)r C(ro), 

(0. 1,0.)q~C(r)-C(ro)} ~ D 

Now, using the same decomposition as in the proof of Proposition 1, we 
have that 

Bn(r, ro) Bn(rO) 

D 

f ; 
C(ro) C(r) 
On-l+On~O 

=-2 A~n -uo ~p(O) dO [ Q z ( r ) -  Q2(ro)] (4) 

which proves the implication 

dQ2 dQ. 
T = o o ~  dr =o0. | 

Remark 1. The method applied in the proof of Proposition 2 does 
not work in the periodic case. However, even in this case we can obtain the 
following version of the estimate (4): 

- q~(O) dO [Q~'(r)- Q*(ro)] (5) 
u0 

where r > ro, and where Q* is the partition function restricted to the set 

C* ~ {(01,02)eC:01>~0,02<~0} (6) 
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(cf. Fig. 6). This version will be used later to solve the phase transition 
problem in a special case. 

5. E X P L I C I T  F O R M U L A S  F O R  P A R T I T I O N  F U N C T I O N S  

In the previous section a qualitative comparison between the behavior 
of n- and two-element systems was provided. However, for certain values of 
the spacing parameter r, it is possible to obtain an explicit functional 
relation between partition functions Q~ and Q2- 

Let us define 

f x/2 
p= _~/2(P(OldO, c:c(r)  a=fp2 A~Q2: f f~p(O1)(p(O2)dO, d02 (7) 

C 

T h e o r e m  1. Suppose that C c  [0, rc/2] x [-7r/2,  0]. Then 

(1 + a ) n + l - ( 1 - a )  n+l 
Q" = Azn 2a 

and for periodic boundary conditions 

O,=A2n[(l  +a)n+(1-a)  "] 

where A2=2A1/p and a =  ( 1 -  4c/p2) 1/2. 

ProoL Using the notation of Section 3, let us denote 

Ai, j = [ - ~ / 2 ,  ~z/2] n - B+,+ 

A n = A i , 2 u . . -  wAn_l, n 
and 

ft =A1,2w... wA~_I,~wAn, 1 

where n i> 2, and, by definition, A l =  ~ .  
For  n >~ 3, using the fact that An_2, n_ 1(~ An_ 1.n = ~ ,  we obtain that 

an = " '  qo(01) '"cp(0.)d0 
An 

:( +f...;- ;f ) 
AI,2~ "'" ~ A n  2,n-I An-l ,n (AI,2~ "'" tJAn_2,n_l)C~An_l,n 

x (p(0~) �9 �9 �9 q~(0,) dO 

= pao_~+p" 2a2--a2an_ 2 
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(8) 

2" 2a 

which proves the first formula  of Theorem 1. To  obtain  the second formula,  
it suffices to observe that  

AT~ . = b. - cb,,_ 2 

and substitute the b~ computed  above. II 

C o r o l l a r y  1. We have that  

O n = Q~n(C) = ~ ' /n(02)  [9 = ~ n ( C )  = ~ n ( 0 2 ) ]  

So, finally, we have that  

O . = A f n b n = - -  
A l n p  n (1 + a) " + 1 -  (1 - a )  n+l 

then we get 

p n - b = p ( p "  1 - b  n 1 ) + p n - 2 a z - a 2 ( p  n 2 - b . _ 2 )  

A s t ra ightforward compu ta t ion  shows that  

b n = p b . - l - c b n  2, n = 3 , 4  .... 

Therefore,  for the reduced quantit ies b* = bn/p ~, we obta in  the following 
recurrence formula:  

b . - b n  1 - - C  bn_ 2 (9) 

with b * =  1, b* = 1 - c * ,  c* = c/p 2. 
By a s tandard  procedure,  the solutions of (9) can be obta ined by 

introducing the characterist ic equat ion associated with (9): 

X 2  = X _ _  C :{r 

Its roots  are equal  to x l = (1 + a)/2, x2 = (1 - a)/2, where a = (1 - 4c*)!/2, 
and the solution of (9) is given by the formula  

b . - *  - ~x7 +/~x~ 

The coefficients ~ and/~ are easily determined f rom the system of two linear 
equat ions obta ined f rom (9) for n = 1 and n = 2: 

~ = ( l  +a)/2a, fl= - ( 1 - a ) / 2 a  
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where qsn, 7in ( ~ ,  ~n) are polynomials of degree [(n + 1)/2], and, in par- 
ticular, 0n depends smoothly on 02. 

Corol lary  2. Under the assumption of Theorem 1, w eo b t a in  the 
following formula for the average energy per molecule in the ther- 
modynamic limit: 

F= F= - k T  lim log Q~/" = - k T { l o g  A2 ~ + log[ 1 + (1 - 4c/p2) 1/2] } 
n ~ o 9  

Therefore 

p df 0F 2 Ocfi?r 
= -~r = k T  (p2 _ 4c)1/2[p + (p2 _ 4c)1/2] 

]72 O0 2/ ~r 
27z2k T (p2 _ 4c)1/2[p + (p2 _ 4c)1/23 

which indicates that the system in the thermodynamic limit exhibits a 
phase transition at r 0 if and only if the two-element system does so 
[provided c(ro) r p2/4]. 

Remark I. The assumption c(ro)r  p2/4 is essential above. Consider, 
for instance, the model introduced on Fig. 4, with an additional condition 
Uo = 0. In this case p = 7z 2 [cf. (7)3 and for 21/2~< r ~< 2, we have that 

c(r) = (�88 + arc cos �89 2 

Hence p2 _ 4c(2//2) = 0, but c'(21/2) = re/21/2 r 0. 

The system exhibits the phase transition in the thermodynamic limit at 
r o = 21/2, although the corresponding system of two elements does not. 

Remark 2. Theorem 1 holds under the formal assumption that 
C ( r ) c  [0, ~z/2] x [-~z/2, 0] for r•rmi n. The intuitive physical inter- 
pretation of rmi n is clear: rmi n is the minimum spacing of molecules that 
excludes simultaneous interaction of more than two molecules (cf. Fig. 5). 

6. P H A S E  T R A N S I T I O N  F O R  T H E  S Y S T E M  OF  T H I N  R O D S  

In this section we find the specific value of the spacing parameter r for 
which the phase transition occurs in the system of thin rods pictured in 
Fig. 5d. We assume, without loss of generality, that the rods are of length 1. 
In this case the set C is symmetric with respect to the line x + y = 0 and its 

822/46/I-2-6 
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b. 

rmin = t + 2 ~  

C. 

rmin = [v/'~-~ 2 

, 

C rl 

rmin = ~[ 

Fig. 5. For various shapes of particles the minimum spacing rmi n is evaluated that still per- 
mits free swinging of one of the neighboring particles. In particular, for spacings r ~> train, the 
exclusion region C(r) is contained in the quadrant [0, ~z/2] x I - g / 2 ,  0]. 

boundar ies  are given by the sides of the square [ -7 r /2 ,  re/2] x [ -~ r /2 ,  ~/2]  
and the curve 

sin(x - y)  = f r  c o s  y, 

Lr  COS X, 

u~x<.Tr/2, x +  y>~O 
-rc /2<~y<~-u ,  x+y<~O (10) 

where sin u = r/2. We show some sample regions C(r) in Fig. 6. As far as 
the outside potent ial  Uo is concerned,  we assume that  it depends only on 
the average distance of the rod f rom the substrate,  i.e., Uo is a function of 
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-=0 

r<[ 

r= I 

I< r<2  

I=~ C(r) for r , O < r < l  

C'X(r) for this r 

C(r)=C*(r) for r, I_<r<2 
Fig. 6. Exclusion regions C = C(r) for the system of thin rods depend on the spacing r. The 
shape of the regions changes abruptly as r crosses the value 1. The angle u = u(r)= max{0: 
(0, - 0 ) r  C} corresponding to the maximal symmetric permissible tilt of neighboring particles 
is here equal to u(r)= arcsin(r/2). 

= cos 0; ~0(0) = g,(~) for a certain function 0. For  the purpose of this sec- 
tion we assume that 0 ( 1 ) = ( p ( 0 ) r  and that ~ is continuous in a 
neighborhood of 1. Also, recall that the conditions imposed on q~ in Sec- 
tion 4 imply that q~ is bounded from above by a constant K. 

T h e o r e m  2. For the system of thin rods described above, the phase 
transition occurs at r o = rmi n = 1 if and only if 

o 4 , (4 )  

fo -U 
for some a > 0. Moreover, r o = 1 corresponds to the only possible phase 
transition in the above system. 

Proof. In view of Propositions 1 and 2 and Remark 1, it suffices to 
prove the following implications: 

(i) If dc/dr(1)= oo, then for every a > 0  (or, equivalently, for some 

a > 0 )  I ;  = 
(ii) If there exists an a > 0  such that j ' gO(~) /~d~=oo,  then 

dc*/dr(1) = oo. 
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A simple reformulation of (10) gives the following formula for the 

Since in our case [cf. (7)] 

where 

we have 

where 

where u ~< x ~< ~t/2. Hence 

sin x - r 
y = y(x, r) = a r c t a n - -  (11) 

COS X 

Oy - c o s  x 

ar 1 - 2r sin x + r 2 

c = c(r) = 2 f./'2 g(x, r) dx 
~u(,') 

u(r) = arcsin(r/2) 

f y(x,r) g(x, r) =O(cos x) O(cos y) dy 
- - x  

c*(r) = c(r) -  2 (~/2 g:g(X, ?') dx 
"v(r) 

v(r) = arcsin rain(r, 1 ) 

~ y(x,r) 
g*(x, r) = 0(COS x) 0(COS y) dy 

~ 0  

(cf. Fig. 6). Clearly c(r)= c*(r) for r ~> 1. Since g(u(r), r)= g(v(r), r ) =  0, the 
corresponding derivatives take the form 

d_fc = 2 ~/2 0(cos xl 0(cos y(x, r)) Oy(x, r! dx 
dr ~u(r) gr 

dc* 
= 2 f~(r)0( c~ x) 0(cos y(x, r ) ) ~  dx 

dz ~u(r) 

Now, the implication (i) follows immediately from the estimate 

- - ~  ag (12) 

boundary curve of C contained in the triangle x + y/> 0: 
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where r is sufficiently close to 1 and K~, K'a are constants depending only 
on a. The estimate is obtained as follows: by the boundedness  assumption 
imposed on the function ~ and in view of the inequality 

1 -  2r sin x + r2 >~ l - sin x, O <~ x <~ ~z/2, r > 0  

we get that 

I dc e~/2 cos x 0(cos  x) 
~< 2KJ.(~) ] --- ~n-~- dx 

= 2K frl/2 ~( ( 1 -  $2)1/2) f -~  d~ 

~9((1 - sZ)l/z) f j  ~b((1 - s2)l/z) 
<~ 2K ds + 2K 

/2 f - s  1 - s 
ds 

for each b, r/2 < b < 1. Now,  

fb @((1--$2) 1/2 ) 
1 - - s  

where a = ( 1 - b 2 )  1/2 and 

2 f~ ~,((1 - s~) ~/~) 
ds ~ ~ 1 - s 2 

2 [ .  t~(~) d~ 
~d,:~jo- 7- 

eb 0((1_S2)1/2~ eb ds l - r ~ 2 <  1 - 3 / 2  
l " ds ~< - K l o g  K l o g  - -  
g~72 i - - s  K J~/2 1--- s ~-Z--ff -'~ 1 - b 

for r >  c~ (6 < 1). The above two inequalities give (12) with 

Ka = 2K z log[(1 - 3/2)/(1 - b)]  and K• = 4K/b 

To obtain implication (ii), notice that  the continuity assumption 
imposed on ~ yields the existence of a constant  K ' > 0 ,  a number  wE 
(u, rr/2), and of a 6 > 0  such that ~ (cosy (x ,  r ) ) > K ' ,  for r > 6  and x > w .  
Therefore,  setting sin w = b and P = min(r, 1 ), we get that  

d~* > f~ cosx~,(cosx) 
K' ~(~) r~ dx dr Jw i - - ~ s i n  x +  

.i ~/((l_~_s2)l/2) ds~ 1 Kt ff O((~ --$2)1/2)ds 
=K'~b{ 1- - s  -5 1- - s  

since, for s ~< P ~< 2, 1 - 2rs + r z <~ 5(1 - s). Fur thermore ,  

fb I/1((I -- $2) 1/2 ) ~(l - b2)1/2 ~1(~) r~ 0((1 -s2) t /a)  ds>~ - s d s =  
J~ 1 - s 1 - - 7  J(, ~2),/2 - -  d~ 
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so that, for each r > 6  and a <  ( 1 - b 2 ) l / 2 = c o s  w, 

Taking r ~ 1, the implication (ii) follows. 

Corollary 3. Let Uo = - l o g  ao=cons t .  Then the phase transition 
occurs in the system of thin rods at r 0 = 1. Moreover, a straightforward 
computation shows that 

dc log(1 - r) 2 

dr ao 2r 

and 

dc * 

dr 

log(1 - r) 2 
for r < !  

- a o  2r 

log(1 - r) 2 
for r > l  

- a o  2r 

The above formulas permit computation of the one-dimensional pressure 
after substitution in the formula in Corollary 2. 

C o r o l l a r y  4. If Uo= oo 'I(o,~0), then the system of thin rods will 
exhibit no phase transition. 

ACKNOWLEDGMENT 

Support by the Office of Naval  Research under their SRO grant to 
Case Western Reserve University is acknowledged with gratitude. 

REFERENCES 
1. G. L. Gaines, Jr., Insoluble Monolayers at Liquid-Gas Interfaces (Interscience, New York, 

1966). 
2. A. W. Adamson, Physical Chemistry of  Surfaces, 4th ed. (Wiley-Interscience, New York, 

1982). 
3. N. R. Pallas, Ph.D. Dissertation, Clarkson College of Technology [-available from Univer- 

sity Microfilms, Ann Arbor, MI];  S. R. Middleton and B. A. Pethica, J. Chem. Soc. Fara- 
day Symp. 16:109 (1981). 

4. J. E. Mayer and M. G. Mayer, Statistical Mechanics (Wiley, New York, 1940). 
5. M. Kac, G. E. Uhlenbeck, and P. C. Hemmer, J. Math. Phys. 4:216 (1963). 
6. C. Domb and M. S. Green (eds.), Phase Transitions and Critical Phenomena, Vol. 1-6 

(Academic Press, London, 1972). 



Phase Transition in a One-Dimensional Lattice 85 

7. A. Fulinski and L. Longa, J. Stat. Phys. 21:635 (1973). 
8. G. W. Milton and M. E. Fisher, J. Star. Phys. 32:413 (1983). 
9. L. M. Casey and L. K. Runnels, Z Chem. Phys. 51:5070 (1969). 

10. J. A. Mann, Jr., Langmuir 1:11 (1985). 
11. B, J. Berne and P, Pechukas, J. Chem. Phys. 56:4213 (1972). 
12. M. Reed and K. E. Gubbins, Applied Statistical Mechanics (McGraw-Hill, New York, 

1973). 
13. L. Onsager, Ann. N. Y. Acad. Sci. 51:627 (1949). 


